59 research outputs found

    Nickel oxide thin films grown by chemical deposition techniques: Potential and challenges in next‐generation rigid and flexible device applications

    Get PDF
    Funder: Aziz FoundationFunder: Downing College, CambridgeFunder: Isaac Newton Trust; Id: http://dx.doi.org/10.13039/501100004815Abstract: Nickel oxide (NiO x ), a p‐type oxide semiconductor, has gained significant attention due to its versatile and tunable properties. It has become one of the critical materials in wide range of electronics applications, including resistive switching random access memory devices and highly sensitive and selective sensor applications. In addition, the wide band gap and high work function, coupled with the low electron affinity, have made NiO x widely used in emerging optoelectronics and p‐n heterojunctions. The properties of NiO x thin films depend strongly on the deposition method and conditions. Efficient implementation of NiO x in next‐generation devices will require controllable growth and processing methods that can tailor the morphological and electronic properties of the material, but which are also compatible with flexible substrates. In this review, we link together the fundamental properties of NiO x with the chemical processing methods that have been developed to grow the material as thin films, and with its application in electronic devices. We focus solely on thin films, rather than NiO x incorporated with one‐dimensional or two‐dimensional materials. This review starts by discussing how the p‐type nature of NiO x arises and how its stoichiometry affects its electronic and magnetic properties. We discuss the chemical deposition techniques for growing NiO x thin films, including chemical vapor deposition, atomic layer deposition, and a selection of solution processing approaches, and present examples of recent progress made in the implementation of NiO x thin films in devices, both on rigid and flexible substrates. Furthermore, we discuss the remaining challenges and limitations in the deposition of device‐quality NiO x thin films with chemical growth methods. imag

    Metastable liquid lamellar structures in binary and ternary mixtures of Lennard-Jones fluids

    Full text link
    We have carried out extensive equilibrium molecular dynamics (MD) simulations to investigate the Liquid-Vapor coexistence in partially miscible binary and ternary mixtures of Lennard-Jones (LJ) fluids. We have studied in detail the time evolution of the density profiles and the interfacial properties in a temperature region of the phase diagram where the condensed phase is demixed. The composition of the mixtures are fixed, 50% for the binary mixture and 33.33% for the ternary mixture. The results of the simulations clearly indicate that in the range of temperatures 78<T<102o78 < T < 102 ^{\rm o}K, --in the scale of argon-- the system evolves towards a metastable alternated liquid-liquid lamellar state in coexistence with its vapor phase. These states can be achieved if the initial configuration is fully disordered, that is, when the particles of the fluids are randomly placed on the sites of an FCC crystal or the system is completely mixed. As temperature decreases these states become very well defined and more stables in time. We find that below 90o90 ^{\rm o}K, the alternated liquid-liquid lamellar state remains alive for 80 ns, in the scale of argon, the longest simulation we have carried out. Nonetheless, we believe that in this temperature region these states will be alive for even much longer times.Comment: 18 Latex-RevTex pages including 12 encapsulated postscript figures. Figures with better resolution available upon request. Accepted for publication in Phys. Rev. E Dec. 1st issu

    Role of ALD Al2O3 Surface Passivation on the Performance of p-Type Cu2O Thin Film Transistors

    Get PDF
    High-performance p- type oxide thin film transistors (TFTs) have great potential for many semiconductor applications. However, these devices typically suffer from low hole mobility and high off-state currents. We fabricated p-type TFTs with a phase-pure polycrystalline Cu2O semiconductor channel grown by atomic layer deposition (ALD). The TFT switching characteristics were improved by applying a thin ALD Al2O3 passivation layer on the Cu2O channel, followed by vacuum annealing at 300 degrees C. Detailed characterization by transmission electron microscopy-energy dispersive X-ray analysis and X-ray photoelectron spectroscopy shows that the surface of Cu2O is reduced following Al2O3 deposition and indicates the formation of a 1-2 nm thick CuAlO2 interfacial layer. This, together with field-effect passivation caused by the high negative fixed charge of the ALD Al2O3, leads to an improvement in the TFT performance by reducing the density of deep trap states as well as by reducing the accumulation of electrons in the semiconducting layer in the device off-state.Peer reviewe

    Antiferromagnetism and p‐type conductivity of nonstoichiometric nickel oxide thin films

    Get PDF
    Plasma‐enhanced atomic layer deposition was used to grow non‐stoichiometric nickel oxide thin films with low impurity content, high crystalline quality, and p‐type conductivity. Despite the non‐stoichiometry, the films retained the antiferromagnetic property of NiO

    Towards Oxide Electronics:a Roadmap

    Get PDF
    At the end of a rush lasting over half a century, in which CMOS technology has been experiencing a constant and breathtaking increase of device speed and density, Moore's law is approaching the insurmountable barrier given by the ultimate atomic nature of matter. A major challenge for 21st century scientists is finding novel strategies, concepts and materials for replacing silicon-based CMOS semiconductor technologies and guaranteeing a continued and steady technological progress in next decades. Among the materials classes candidate to contribute to this momentous challenge, oxide films and heterostructures are a particularly appealing hunting ground. The vastity, intended in pure chemical terms, of this class of compounds, the complexity of their correlated behaviour, and the wealth of functional properties they display, has already made these systems the subject of choice, worldwide, of a strongly networked, dynamic and interdisciplinary research community. Oxide science and technology has been the target of a wide four-year project, named Towards Oxide-Based Electronics (TO-BE), that has been recently running in Europe and has involved as participants several hundred scientists from 29 EU countries. In this review and perspective paper, published as a final deliverable of the TO-BE Action, the opportunities of oxides as future electronic materials for Information and Communication Technologies ICT and Energy are discussed. The paper is organized as a set of contributions, all selected and ordered as individual building blocks of a wider general scheme. After a brief preface by the editors and an introductory contribution, two sections follow. The first is mainly devoted to providing a perspective on the latest theoretical and experimental methods that are employed to investigate oxides and to produce oxide-based films, heterostructures and devices. In the second, all contributions are dedicated to different specific fields of applications of oxide thin films and heterostructures, in sectors as data storage and computing, optics and plasmonics, magnonics, energy conversion and harvesting, and power electronics

    Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge carrier recombination

    Get PDF
    I V VI2 ternary chalcogenides are gaining attention as earth abundant, nontoxic, and air stable absorbers for photovoltaic applications. However, the semiconductors explored thus far have slowly rising absorption onsets, and their charge carrier transport is not well understood yet. Herein, we investigate cation disordered NaBiS2 nanocrystals, which have a steep absorption onset, with absorption coefficients reaching gt;105 cm amp; 8722;1 just above its pseudo direct bandgap of 1.4 eV. Surprisingly, we also observe an ultrafast picosecond time scale photoconductivity decay and long lived charge carrier population persisting for over onemicrosecond in NaBiS2 nanocrystals. These unusual features arise because of the localised, non bonding S p character of the upper valence band, which leads to a high density of electronic states at the band edges, ultrafast localisation of spatially separated electrons and holes, as well as the slow decay of trapped holes. Thiswork reveals the critical role of cation disorder in these systems on both absorption characteristics and charge carrier kinetic
    • 

    corecore